Coronavirus y murciélagos

Autores/as

  • Elías Fernando Rodríguez Ferri

DOI:

https://doi.org/10.18002/ambioc.i19.7329

Palabras clave:

Coronavirus, Emergentes, Murciélagos, Pandemias

Resumen

Desde la emergencia del SARS (síndrome respiratorio agudo grave) en 2002-03 en China y, demostrada la relación etiológica con murciélagos, estos particulares mamíferos voladores han despertado un interés inusitado por parte de los científicos e investigadores. A sus caracteres singulares del vuelo unen otros no menos importantes, como sus hábitos nocturnos, ecolocalización, longevidad y su condición de reservorios de gran cantidad de virus, sobre todo ARN, que no suponen en ellos cambios clínicos, con toda probabilidad el resultado de un fenómeno de tolerancia y persistencia viral en el que están implicados mecanismos de control de la respuesta inmunitaria innata y adaptativa muy sofisticados, capaces de mantener un estado que puede romperse en condiciones excepcionales y representar un factor de riesgo para el salto a otros animales o el hombre. En este artículo se revisa el interés particular de los coronavirus en relación con los murciélagos

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ahn, M., Anderson, D.E., Zhang, Q., Tan, C.W. et al. 2019. Dampened NLRP3-mediated inflammation in bats and implications for a special viral reservoir host. Nat Microbiol, 4:789-799

Almeida, J.D., Berry, D.M., Cunningham, C.H., Hamre, D., Hofstad, M.S. et al. 1968. Virology: Coronavirus. Nature, 220:650.

Almeida, J.D., Tyrrell, D.A.J. 1967.The morphology of three previously uncharacterised human respiratory viruses that grow in organ culture. J Gen Virol, 1:175.

Banerjee, A., Baker, M., Kulcsar, K., Misra, V., Plowrigh, R., Morsmannk, S. 2020. Novel insights into immune systems of bats. Front Immunol, 11:26.

Banerjee, A., Kulcsar, K., Misra, V., Frieman, M., Mossman, K. 2019. Bats and coronaviruses. Viruses, 11:E41

Banner, L.R., Lai, M.M. 1991. Random nature of coronavirus RNA recombination in the absence of selection pressure. Virology, 185:441-445

Bokelman, M., Balkema-Buschmann, A. 2021. Coronaviruses in bats. Berliner und Munchener Tierarztiiche Wochenschrift, 134:1-16

Bonilla-Aldana, K., Jimenez-Díaz, D., Arango-Duque, J.S., Aguirre Flors, M., et al. 2021. Bats in ecosystem and their wide spectrum of viral infections potential threats; SARS-CoV-2 and other emerging viruses. Int J Infect Dis, 102:87-96

Brook, C.E., Dobson, A.P. 2015. Bats as ‘special’ reservoirs for emerging zoonotic pathogens. Trends Microbiol, 23:172–180.

Bushnell, L.D., Brandly, C.A. 1933. Bronquitis infecciosa aviar. Poultry Science, 12:55-60

Calisher, C.H., Childs, J.E., Field, H.E., Holmes, K.V., Schountz, T. 2006. Bats: important reservoir host of emerging viruses. Clin Microbiol Rev, 19:531-545

Clayton, E., Munir, M. 2020. Fundamental characteristics of bat interferon system. Front Cell Infect Microbiol, 10:527921

Chu, D.K., Peiris, J.S., Chen, H., Guan, Y., Poon, L.L. 2008. Genomic characterizations of bat coronaviruses (1A, 1B and HKU8) and evidence for co-infections in Miniopterus bats. J Gen Virol, 89:1282-1287

Cogswell-Hawkinson, A. Bowen, R., James, S., Gardiner, D. et al. 2012. Tacaribe virus causes fatal infection of an ostensible reservoir host, the Jamaican fruit bat. J Virol, 86:5791–5799.

Corman, V.M., Baldwin, H.J., Tateno, A.F., Zerbinati, R.M. et al. 2015.Evidence for an ancestral association of human coronavirus 229E with bats. J Virol, 89:11858-11870

De Sabato, L., Lelly, D., Faccin, F., Canciani, S. et al. 2019. Full genome characterization of two Alpha-coronavirus species from Italian bats. Virus Res 260:60-66

Decaro, N., Lorusso, A. 2020. Novel human coronavirus (SARS-CoV-2): a lesson from animal coronaviruses. Vet Microbiol, 244:108693

Falcon, A., Vázquez-Morón, S., Casas, I., Aznar, C., Ruiz, G. et al. 2011. Detection of alpha and betacoronaviruses in multiple Iberian bat species. Arch Virol., 156:1883-1890

Fan, Y., Zhao, K., Shi, Z.L., Zhou, P. 2019. Bat coronaviruses in China. Viruses; 2(3):E210 11

Fenton, M.B. 2015. Bats: A world of science and mystery. University of Chicago Press, USA

Freuling, C., Vos, A., Johnson, N., Kaipf, I., Denzinger, A. et al. 2009. Experimental infection of serotine bats (Eptesicus serotinus) with European Bat Lyssavirus type1a. J Gen Virol, 90:2493-2502

Frick, W.N., Puechmaille, S.J., Willis, C.K.R. 2016. White-nose syndrome in bats. Ecol Evolut Biol. Univ California; Chapt 9, 245-262

Ge, X.Y., Li, J.L., Yang, X.L., Chmura, A.A., Zhu, G., Epstein, J.H. 2013.Isolation and characterization of a bat SARS-like coronavirus that uses the ACE-2 receptor. Nature, 503:535-538

Hoffmann, M., Kleine,-H., Schroeder, S., Krüger, N. et al. 2020. SARS-CoV-2 cell entry depends on ACE-2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, pii:S0092 8674(20)30229 4

Hu, B., Ge, X., Wang, L.F., Shi, Z. 2015. Bat origin of human coronaviruses. Virol J, 12:221

ICTV (Comité internacional de Taxonomía de Virus). Taxonomía de virus. Versión 2020. Orthocoronaviridae. https://talk.ictvonline.org/ictv-reports/ictv_9th_report/positive-sense-rna-viruses-2011/w/posrna_viruses/223/coronaviridae-figures. (Acceso 1/10/2021)¨

Jebb, D., Huang, Z., Pippel, M., Hughes, G. et al. 2020. Six new reference quality bat genomes illuminate the molecular basis and evolution of bat adaptations. Nature, 583:578-585

Lam, T., Shum, M.H., Zhu, H.C., Tong, Y.G. et al. 2020. Identifying SARS-CoV-2 related coronaviruses in Malayan pangolins. Nature, 583:282-285

Li, W., Shi, Z., Yu, M., Ren, W. et al. 2005. Bats are natural reservoirs of SARS-like coronaviruses. Science, 310:676-679

Luis, A.D., Hayman, D.T.S., O’Shea T.J., Cryan P.M. et al. 2013. A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special? Proc R Soc Lond B 280:20122753

Luo, C.M., Wang, N., Yang, X.L., Liu, H.Z. et al. 2018. Discovery of novel bat coronaviruses in South China that use the same receptor as Middle East respiratory syndrome coronavirus. J Virol, 92, e00116-18

Malaiyan, J., Arumugan, S., Mohan, K., Radhakrishnan, G.G. 2020. An update on the origin of SARS-CoV-2: Despite closest identity, bat (RaTG13) and pangolin derived coronaviruses varied in the critical binding site and O-link glycan residues. J Med Virol, doi: 10.1002/jmv.26261

Mühldorfer, K., Speck, S., Kurth, A., Lesnik, R. et al. 2011. Diseases and causes of death in European bats: dynamics in disease susceptibility and infection rates. PLoS One, 6:e29773

Negredo, A., Palacios, G., Vázquez-Moro, S., González, F. et al. 2011. Discovery of an ébolavirus-like-filovirus in Europe. PLoS Pathog, 7:e1002304

O’Shea, T., Cryan, P., Cunninham, A. et al. 2014. Bat flight and zoonotic virus. Emerg Infect Dis, 20(5):741-745

Poon, L.L., Chu, D.K., Chan, K.H., Wong, O.K., Ellis, T.M. et al. 2005. Identification of a novel coronavirus in bats. J Virol, 79:2001-2009

Rodríguez-Ferri, E.F., Calvo-Sáez, L.A. 2020. El poder de la rabia. Organización Colegial Veterinaria de España.

Rodríguez-Ferri, E.F. 2021. Amigos o enemigos. Murciélagos en el origen y emergencia de zoonosis, con referencia particular a la rabia. Anales de la Real Academia de Medicina de Valladolid, (pendiente)

Schalk, A.F., Hawn, M.C. 1931. An apparently new respiratory disease of baby chicks J. Am Vet Med Ass., 78:413-423

Schountz, T., Baker, M.L., Butler, J., Munster, V. 2017. Immunological control of viral infections in bats and the emergence of viruses highly pathogenic to humans. Front Immunol, 8:1098

Subudhi, S., Rapin, N., Bollinger, T.K., Hill, J.E. et al. 2017. A persistently infecting coronavirus in hibernating Myotis lucifugus, the North American little brown bat. J. Gen Virol., 98:2297-2309

Tang, X., Wu, C., Li, X., Song, Y. et al. 2020. On the origin and continuing evolution of SARS-CoV-2. Sci Rev, 7(6):1012-1023

Tao, Y., Shi, M., Chommanard, C., Queen, K. et al. 2017. Surveillance of bat coronaviruses in Kenya identifies relatives of human coronavirues NL63 and 229E and their recombination history. J Virol, 91, e01953-16

Teeling, E.S., Vernes, S.C., Davalos, L.M., Ray, D.A. et al. 2018. Bat bi0logy, genomes and the Bat1K Project. Annu Rev Animal Biosci, 6:23-46

Thomas, D.W. 1983.The annual migrations of three species of West African fruit bats (Chiroptera, Pteropodidae). Can J Zool, 2266-2272

Tong, S., Conrardy, C., Ruone, S., Kuzmin, L.V. et al. 2009. Detection of novel SARS-like and other coronaviruses in bats from Kenya. Emerg Infect Dis, 15:482-485

Tyrrell, D.A., Bynoe, M.L. 1965. Cultivation of a novel type of common-cold virus in organ cultures. Br Med J, 1:1467-1470

UC Davis. Veterinary Medicine. One Health Institute. About Predict. https://ohi.vetmed.ucdavis.edu/programs-projects/predict-project/about. Acceso 6/10/2021

Wong, A.C.P., Li, X., Lau, S.K.P., Woo, P.C. 2019. Global epidemiology of bat coronaviruses. Viruses, 11:2,E174

Woo, P.C., Lau, S.K., Li, K.S., Poon, R.W. et al. 2006. Molecular diversity of coronaviruses in bats. Virology, 351:180-187

Wu, Z., Yang, L., Ren, X., He, G. et al. 2016. Deciphering the bat virome catalog to better understand the ecological diversity of bat viruses and the bat origin of emerging infectious diseases. ISME, 10:609-620

Zhou, P., Fan, H., Lan, T., Yang, X-L. et al. 2018. Fatal swine acute diarrhoea syndrome caused by HKV2, related coronavirus of bat origin. Nature, 556:255-258

Zhou, P., Yang, X.L., Wang, X.G., Hu, B. et al. 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579:270-273

Zhu, P., Garber, P.A., Wang, L., Li, M., Belov, K. et al. 2020. Comprehensive knowledge of reservoirs hosts is key to investigating future pandemics. Cell Press Past J; The innovation 1:100065, 1- 2

Descargas

Publicado

2021-12-22

Cómo citar

Rodríguez Ferri, E. F. (2021). Coronavirus y murciélagos. Ambiociencias, (19), 37–48. https://doi.org/10.18002/ambioc.i19.7329

Número

Sección

Número especial sobre coronavirus