Vacunas contra la COVID-19

Autores/as

  • Alberto J. Villena

DOI:

https://doi.org/10.18002/ambioc.i19.7332

Palabras clave:

Anticuerpos vacunales, Inmunología, Vacunología, COVID-19

Resumen

La pandemia de la COVID-19, causada por el betacoronavirus SARS-CoV-2, ha tenido una importante incidencia sanitaria y socioeconómica, que solo la vacunación masiva ha tenido la capacidad de mitigar. En esta revisión se abordan aspectos fundamentales de la virología del SARS-CoV-2 en relación con las bases inmunológicas de las vacunas antivirales y de las principales tecnologías vacunales de las vacunas contra la COVID-19, con especial atención a las que utilizan las “nuevas tecnologías” vacunales, derivadas de los avances biotecnológicos. Se describen en detalle algunos ejemplos de las vacunas
contra la COVID-19 autorizadas por la Organización Mundial de la Salud y las agencias del medicamento de diversos países. Finalmente, se analizan los impactos sanitarios, científicos y sociales que han tenido el desarrollo de estas vacunas

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Afrough, B., Dowall, S. y Hewson, R., 2019. Emerging viruses and current strategies for vaccine intervention. Clinical and experimental immunology, 196: 157–166.

Alhashimi, M., Elkashif, A., Sayedahmed, E. E. y Mittal, S. K., 2021. Nonhuman adenoviral

vector-based platforms and their utility in designing next generation of vaccines for infectious diseases. Viruses, 13: 1493.

Antonelli, M., Penfold, R. S., Merino, J., Sudre, C. H. et al., 2021. Risk factors and disease profile of post-vaccination SARS-CoV-2 infection in UK users of the COVID Symptom Study app: a prospective, community-based, nested, case-control study. The Lancet, S1473-3099(21)004606.

Atasheva, S. y Shayakhmetov, D. M., 2016. Adenovirus sensing by the immune system. Current opinion in virology, 21: 109–113.

Bahri, P. y Castillon Melero, M., 2018. Listen to the public and fulfil their information interests - translating vaccine communication research findings into guidance for regulators. British journal of clinical pharmacology, 84: 1696–1705.

Barrett, P. N., Mundt, W., Kistner, O. y Howard, M. K., 2009. Vero cell platform in vaccine production: moving towards cell culture-based viral vaccines. Expert review of vaccines, 8: 607–618.

Beljelarskaya S. N., 2011. Baculovirus expression systems for production of recombinant

proteins in insect and mammalian cells. Molecular biology, 45: 123–138.

Berger, I. y Schaffitzel, C., 2020. The SARS-CoV-2 spike protein: balancing stability and infectivity. Cell research 30: 1059–1060.

Bestle, D., Heindl, M. R., Limburg, H., Van Lam van, T. et al., 2020. TMPRSS2 and furin

are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life science alliance, 3: e202000786.

Bettini, E. y Locci, M., 2021. SARS-CoV-2 RNAm Vaccines: Immunological mechanism and beyond. Vaccines 9: 147.

Bode, C., Zhao, G., Steinhagen, F., Kinjo, T. y Klinman, D. M., 2011. CpG ADN as a vaccine

adjuvant. Expert review of vaccines, 10: 499–511.

Bos, R., Rutten, L., van der Lubbe, J., Bakkers, M., Hardenberg, G. et al., 2020. Ad26 vector-based COVID-19 vaccine encoding a prefusion-stabilized SARS-CoV-2 Spike immunogen induces potent humoral and cellular immune responses. NPJ vaccines, 5: 91.

Buschmann, M. D., Carrasco, M. J., Alishetty, S., Paige, M. et al., 2021. Nanomaterial

delivery systems for RNAm vaccines. Vaccines, 9: 65.

Cai, Y., Zhang, J., Xiao, T., Peng, H., Sterling, S. M. et al., 2020. Distinct conformational

states of SARS-CoV-2 spike protein. Science, 369: 1586–1592.

Callaway, E., 2020. The race for coronavirus vaccines: a graphical guide. Nature, 580:

-577.

Carvalho, T., Krammer, F. y Iwasaki, A., 2021. The first 12 months of COVID-19: a timeline

of immunological insights. Nature reviews. Immunology, 21: 245–256.

Carty, M., Guy, C. y Bowie, A. G., 2021. Detection of Viral Infections by Innate Immunity.

Biochemical pharmacology, 183: 114316.

Chavda, V. P., Vora, L. K., Pandya, A. K. y Patravale, V. B., 2021. Intranasal vaccines for SARS-CoV-2: From challenges to potential in COVID-19 management. Drug discovery today, S1359-6446:00331-7.

Choi, A., Koch, M., Wu, K., Chu, L., Ma, L. et al., 2021. Safety and immunogenicity of

SARS-CoV-2 variant RNAm vaccine boosters in healthy adults: an interim analysis. Nature medicine, 27: 2025–2031.

Coronaviridae Study Group of the International Committee on Taxonomy of Viruses,

The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nature microbiology, 5:536–544.

Dai, L., Zheng, T., Xu, K., Han, Y. et al., 2020. A universal design of Betacoronavirus vaccines against COVID-19, MERS, and SARS. Cell, 182: 722–733.e11.

D’Aoust, M. A., Couture, M. M., Charland, N., Trépanier, S. et al., 2010. The production

of hemagglutinin-based virus-like particles in plants: a rapid, efficient and safe

response to pandemic influenza. Plant biotechnology journal, 8: 607–619.

Dey, A., Chozhavel Rajanathan, T. M., Chandra, H., Pericherla, H. et al., 2021. Immunogenic potential of ADN vaccine candidate, ZyCoV-D against SARS-CoV-2 in animal models. Vaccine, 39: 4108–4116.

Del Giudice, G., Rappuoli, R. y Didierlaurent, A. M., 2018. Correlates of adjuvanticity: A review on adjuvants in licensed vaccines. Seminars in immunology, 39: 14–21.

Di Pasquale, A., Bonanni, P., Garçon, N., Stanberry, L. R. et al., 2016. Vaccine safety evaluation: Practical aspects in assessing benefits and risks. Vaccine, 34: 6672–6680.

Dolgin, E. 2021. The tangled history of RNAm vaccines. Nature, 597: 318–324. Fomsgaard, A. y Liu, M. A., 2021. The key role of nucleic acid vaccines for one health. Viruses, 13: 258.

Formica, N., Mallory, R., Albert, G., Robinson, M. et al., 2021. Different dose regimens of a SARS-CoV-2 recombinant spike protein vaccine (NVX-CoV2373) in younger and older adults: A phase 2 randomized placebo-controlled trial. PLoS medicine, 18: e1003769.

Francica, J. R., Flynn, B. J., Foulds, K. E., Noe, A. T. et al., 2021. Vaccination with SARSCoV-2 spike protein and AS03 adjuvant induces rapid anamnestic antibodies in the lung and protects against virus challenge in nonhuman primates. bioRxiv, 2021.03.02.433390.

Gallardo, J., Pérez-Illana, M., Martín-González, N. y San Martín, C., 2021. Adenovirus structure: What is new? International journal of molecular sciences, 22: 5240.

Gao, Q., Bao, L., Mao, H., Wang, L. et al., 2020. Development of an inactivated vaccine candidate for SARS-CoV-2. Science, 369: 77–81.

García-Arriaza, J., Garaigorta, U., Pérez, P., Lázaro-Frías, A. et al., 2021. COVID-19 vaccine candidates based on modified vaccinia virus Ankara expressing the SARSCoV-2 spike induce robust T- and B-cell immune responses and full efficacy in mice. Journal of virology, 95: e02260-20.

Geers, D., Shamier, M. C., Bogers, S., den Hartog, G. et al., 2021. SARS-CoV-2 variants

of concern partially escape humoral but not T-cell responses in COVID-19 convalescent donors and vaccinees. Science immunology, 6: eabj1750.

Gobeil, P., Pillet, S., Séguin, A., Boulay, I., Mahmood, A. et al., 2021. Interim report of a phase 2 randomized trial of a plant-produced virus-like particle vaccine for Covid-19 in healthy adults aged 18–64 and older adults aged 65 and older. medRxiv, 2021.05.14.21257248.

Goepfert, P. A., Fu, B., Chabanon, A. L., Bonaparte, M. I., Davis. et al., 2021. Safety and immunogenicity of SARS-CoV-2 recombinant protein vaccine formulations in healthy adults: interim results of a randomised, placebo-controlled, phase 1-2, dose-ranging study. The Lancet. Infectious diseases, 21: 1257–1270.

Groenke, N., Trimpert, J., Merz, S., Conradie, A. M. et al., 2020. Mechanism of virus attenuation by codon pair deoptimization. Cell reports, 31: 107586.

Hobernik, D. y Bros, M., 2018. ADN vaccines-how far from clinical use? International journal of molecular sciences, 19: 3605.

Karikó, K., Muramatsu, H., Welsh, F.A., Ludwig, J. et al., 2008. Incorporation of pseudouridine

into RNAm yields superior nonimmunogenic vector with increased translational capacity and biological Stability. Molecular Therapy, 16: 1833–1840.

Keech, C., Albert, G., Cho, I., Robertson, A. et al., 2020. Phase 1-2 Trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. The New England journal of medicine, 383: 2320–2332.

Krause, P. R., Fleming, T. R., Peto, R., Longini, I. M. et al., 2021. Considerations in boosting

COVID-19 vaccine immune responses. Lancet, 398: 1377–1380.

Le Nouën, C., McCarty, T. yang, L., Brown, M. et al., 2021. Rescue of codon-pair deoptimized

respiratory syncytial virus by the emergence of genomes with very large internal deletions that complemented replication. Proceedings of the National Academy of Sciences of the United States of America, 118: e2020969118.

Lobera, J. y Cabrera, P., 2021. Evolución de la percepción social de aspectos científicos

de la COVID-19 (julio 2020 – enero 2021). Fundación Española para la Ciencia y la Tecnología, FECYT, 2021. E-nipo: 831210196.

Logunov, D. Y., Dolzhikova, I. V., Zubkova, O. V., Tukhvatulin, A. I. et al., 2020. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous primeboost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia. Lancet, 396: 887–897.

Lundstrom, K., Barh, D., Uhal, B. D., Takayama, K. et al., 2021. COVID-19 Vaccines and thrombosis-roadblock or dead-end street? Biomolecules, 11: 1020.

Maginnis M. S., 2018. Virus-Receptor interactions: The key to cellular invasion. Journal of molecular biology, 430: 2590–2611.

Mallapaty, S., 2021: China’s COVID vaccines have been crucial — now immunity is waning. Nature, 598: 398-399.

Momin, T., Kansagra, K., Patel, H., Sharma, S. et al., 2021. Safety and Immunogenicity of a ADN SARS-CoV-2 vaccine (ZyCoV-D): Results of an open-label, non-randomized phase I part of phase I/II clinical study by intradermal route in healthy subjects in India. EClinicalMedicine, 38: 101020.

Nooraei, S., Bahrulolum, H., Hoseini, Z. S., Katalani, C. et al., 2021. Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers.

Journal of nanobiotechnology, 19: 59.

Okamura, S. y Ebina, H., 2021. Could live attenuated vaccines better control COVID-19? Vaccine, 39: 5719–5726.

Ong, H. K., Tan, W. S. y Ho, K. L., 2017. Virus like particles as a platform for cancer vaccine

development. PeerJ, 5: e4053.

Ortiz-Sánchez, E., Velando-Soriano, A., Pradas-Hernández, L., Vargas-Román, K. et al., 2020. Analysis of the anti-vaccine movement in social networks: A systematic review. International journal of environmental research and public health, 17: 5394.

Pardi, N., Hogan, M. J., Naradikian, M. S., Parkhouse, K. et al., 2018. Nucleoside-modified ARNm vaccines induce potent T follicular helper and germinal center B cell responses. The journal of experimental medicine, 215: 1571–1588.

Rock, K. L., Reits, E. y Neefjes, J., 2016. Present yourself! By MHC class I and MHC class

II Molecules. Trends in immunology, 37: 724–737.

Rosales-Mendoza, S., Márquez-Escobar, V. A., González-Ortega, O., Nieto-Gómez, R. y Arévalo-Villalobos, J. I., 2020. What does plant-based vaccine technology offer to the fight against COVID-19? Vaccines, 8: 183.

Røttingen, J. A., Gouglas, D., Feinberg, M., Plotkin, S. et al., 2017. New vaccines against

epidemic infectious diseases. The New England journal of medicine, 376: 610–613.

Rubio, P. y Carvajal, A., 2020. Coronavirus. AmbioCiencias, 18: 5-18.

Russell, M. W., Moldoveanu, Z., Ogra, P. L. y Mestecky, J., 2020. Mucosal immunity in COVID-19: A neglected but critical aspect of SARS-CoV-2 infection. Frontiers in immunology, 11: 611337.

Sadoff, J., Gray, G., Vandebosch, A., Cárdenas, V. et al., 2021. Safety and efficacy of single-dose Ad26.COV2.S vaccine against Covid-19. The New England journal of medicine, 384: 2187–2201.

Sahin, U., Muik, A., Derhovanessian, E., Vogler, I. et al., 2020. COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. Nature, 586: 594–599.

Sahin, U., Muik, A., Vogler, I., Derhovanessian, E. et al., 2021. BNT162b2 vaccine induces

neutralizing antibodies and poly-specific T cells in humans. Nature, 595:572–577.

Shiver, J. W., Fu, T. M., Chen, L., Casimiro, D. R. et al., 2002. Replication-incompetent

adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity. Nature, 415: 331–335.

Silveira, M. M., Moreira, G. y Mendonça, M., 2021. ADN vaccines against COVID-19: Perspectives and challenges. Life sciences, 267: 118919.

Slaoui, M. y Hepburn, M., 2020. Developing safe and effective Covid vaccines - operation

warp speed’s strategy and approach. The New England journal of medicine, 383: 1701–1703.

Spencer, A.J., Morris, S., Ulaszewska, M., Powers, C. et al., 2021. The ChAdOx1 vectored

vaccine, AZD2816, induces strong immunogenicity against SARS-CoV-2 Beta (B.1.351) and other variants of concern in preclinical studies. bioRxiv, 2021.06.08.447308.

Swanson, P. A., Padilla, M., Hoyland, W., McGlinchey, K. et al., 2021. AZD1222/ChAdOx1

nCoV-19 vaccination induces a polyfunctional spike protein-specific Th1 response

with a diverse TCR repertoire. Science translational medicine, eabj7211.

Tang, T., Bidon, M., Jaimes, J. A., Whittaker, G. R. y Daniel, S., 2020. Coronavirus membrane

fusion mechanism offers a potential target for antiviral development. Antiviral research, 178: 104792.

Tao, K., Tzou, P. L., Nouhin, J., Gupta, R. K. et al., 2021. The biological and clinical significance

of emerging SARS-CoV-2 variants. Nature reviews. Genetics, 1–17.

Tarke, A., Sidney, J., Methot, N., Zhang, Y. et al., 2021. Negligible impact of SARS-CoV-2

variants on CD4 + and CD8 + T cell reactivity in COVID-19 exposed donors and vaccinees. bioRxiv, 2021.02.27.433180.

Tian, J. H., Patel, N., Haupt, R., Zhou, H. et al., 2021. SARS-CoV-2 spike glycoprotein vaccine candidate NVX-CoV2373 immunogenicity in baboons and protection in mice. Nature communications, 12: 372.

Travis C. R., 2020. As plain as the nose on your face: The case for a nasal (mucosal) route

of vaccine administration for Covid-19 disease prevention. Frontiers in immunology, 11: 591897.

Turner, J. S., O’Halloran, J. A., Kalaidina, E., Kim, W. et al., 2021. SARS-CoV-2 RNAm vaccines induce persistent human germinal centre responses. Nature, 596: 109–113.

Valdes-Balbin, Y., Santana-Mederos, D., Paquet, F., Fernandez, S. et al., 2021. Molecular aspects concerning the use of the SARS-CoV-2 receptor binding domain as a target for preventive vaccines. ACS central science, 7: 757–767.

van Doremalen, N., Lambe, T., Spencer, A., Belij-Rammerstorfer, S. et al., 2020. ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature, 586: 578–582.

van Erp, E. A., Luytjes, W., Ferwerda, G. y van Kasteren, P. B., 2019. Fc-mediated antibody

effector functions during respiratory syncytial virus infection and disease. Frontiers in immunology, 10: 548.

Voysey, M., Clemens, S., Madhi, S. A., Weckx, L. Y. et al., 2021. Safety and efficacy of the

ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet, 397: 99–111.

Walls, A. C., Park, Y. J., Tortorici, M. A., Wall, A. et al., 2020. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 181, 281–292.e6.

Wang, H., Zhang, Y., Huang, B., Deng, W. et al., 2020a. Development of an inactivated

vaccine candidate, BBIBP-CorV, with potent protection against SARS-CoV-2. Cell, 182: 713–721.e9.

Wang, N., Shang, J., Jiang, S. y Du, L., 2020b. Subunit vaccines against emerging pathogenic human coronaviruses. Frontiers in microbiology, 11: 298.

Wang, Y. yang, C., Song, Y., Coleman, J. R. et al., 2021. Scalable live-attenuated SARSCoV-

vaccine candidate demonstrates preclinical safety and efficacy. Proceedings of the National Academy of Sciences of the United States of America, 118: e2102775118.

Ward, B. J., Gobeil, P., Séguin, A., Atkins, J., Boulay, I. et al., 2021. Phase 1 randomized

trial of a plant-derived virus-like particle vaccine for COVID-19. Nature medicine, 27: 1071–1078.

Woźniak, E., Tyczewska, A. y Twardowski, T., 2021. A shift towards biotechnology: Social opinion in the EU. Trends in biotechnology, 39: 214–218.

Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A. et al., 2020. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 367: 1260–1263.

Wu, F., Zhao, S. yu, B., Chen, Y. M. et al., 2020. A new coronavirus associated with human respiratory disease in China. Nature, 579: 265–269.

Xia, S., Duan, K., Zhang, Y., Zhao, D. et al., 2020. Effect of an inactivated vaccine against SARS-CoV-2 on safety and immunogenicity outcomes: Interim analysis of 2 randomized clinical trials. JAMA, 324: 951–960.

Yang, S., Li, Y., Dai, L., Wang, J., He, P. et al., 2021. Safety and immunogenicity of a recombinant

tandem-repeat dimeric RBD-based protein subunit vaccine (ZF2001) against COVID-19 in adults: two randomised, double-blind, placebo-controlled, phase 1 and 2 trials. The Lancet. Infectious diseases, 21: 1107–1119.

Zhao, X., Zheng, A., Li, D., Zhang, R. et al., 2021. Neutralization of ZF2001-elicited antisera

to SARS-CoV-2 variants. The Lancet. Microbe, 2: e494.

Zhu, N., Zhang, D., Wang, W., Li, X. et al., 2012. PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunological reviews, 249: 158–175.

Zhu, N., Zhang, D., Wang, W., Li, X. et al., 2020a. A novel coronavirus from patients

with pneumonia in China, 2019. The New England journal of medicine, 382:727–733.

Zhu, F. C., Li, Y. H., Guan, X. H., Hou, L. H. et al., 2020b. Safety, tolerability, and immunogenicity

of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet, 395:1845–1854.

Descargas

Publicado

2021-12-22

Cómo citar

Villena, A. J. (2021). Vacunas contra la COVID-19. Ambiociencias, (19), 75–108. https://doi.org/10.18002/ambioc.i19.7332

Número

Sección

Número especial sobre coronavirus