Application of a coherent risk measure in the price calculation of an income insurance (annuities) = Aplicación de una medida de riesgo coherente para el cálculo de la prima de riesgo en un seguro de rentas

Montserrat Hernández Solís, Emma Berenguer Cárceles

Resumen


Una práctica común que realizan las entidades aseguradoras es la de modificar las tasas de mortalidad instantánea al aplicar el principio de prima neta con el fin de hacer frente a las desviaciones desfavorables de la siniestralidad. Este documento proporciona una respuesta matemática a esta cuestión mediante la aplicación de la función de distorsión de potencia de Wang. Tanto la prima neta y la función de distorsión de Wang son medidas de riesgo coherentes, siendo este último aplicado por primera vez en el campo delos seguros de vida.
Utilizando las leyes de Gompertz y Makeham primero calculamos la prima a nivel general y en una segunda parte, se aplica el principio de cálculo de la prima basado en función de distorsión de potencia de Wang para calcular el recargo sobre la prima de riesgo ajustada. El precio de prima única de riesgo se ha aplicado a una forma de cobertura de seguro de supervivencia, el seguro de rentas.La principal conclusión que puede extraerse es que mediante el uso de la función de distorsión, la nueva tasa instantánea de mortalidad es directamente proporcional a un múltiplo, que es justamente el exponente de esta función y hace que el riesgo de longevidad sea mayor. Esta es la razón por la prima de riesgo ajustada es superior a la prima neta.

Modification of instantaneous mortality rates when applying the net premium principle in order to cope with unfavorable deviations in claims, is common practice carried out by insurance companies. This paper provides a mathematical answer to this matter by applying Wang’s power distortion function. Both net premium and Wang’s distortion function are coherent risk measures, the latter being first applied to the field of life insurance.
Using the Gompertz and Makeham laws we first calculate the premium at a general level and in a second part, the principle of premium calculation based on Wang´s power distortion function is applied to calculate the adjusted risk premium surcharge. The risk single premium pricing has been applied to a form of survival insurance coverage called Annuities.The main conclusion to be drawn is that by using the distortion function, the new instantaneous mortality rate is directly proportional to a multiple, which happens to be the exponent of this function and causes longevity risk to be greater. This is why the adjusted risk premium is higher than the net premium.


Palabras clave


Seguro de rentas; Axiomas coherentes; Medida coherente del riesgo; Función de distorsión; Recargo implícito; Leyes de supervivencia; Annuities; Coherent axioms; Coherent risk measure; Distortion function; Implicitly surcharged; Survival laws

Texto completo:

PDF (English)

Referencias


Artzner, P. and Delbaen, F. (1999). Application of coherent risk measures to capital requirements in insurance. North American Actuarial Journal, 3(2), 11-15.

Bessis, J. (2002). Risk management in banking (2nd ed.). Chichester: John Wiley and Sons.

Bowers, JR., Newton, L., Gerber, H. and Jones, D. (1997). Actuarial mathematics. Illinois: The Society of Actuaries.

European Commission. Internal Market and Services DG. Insurance and pensions. Brussels., (2010), QIS5 Technical Specifications (Working Document of the Commission services). https://www.ceiops.eu

Gómez Deniz, E. and Sarabia, JM. (2008). Credibility theory. Development and applications in insurance premiums and operational risks. Madrid: MAPFRE Foundation.

Hernández Solís, M. (2013). Life insurance pricing with distorted life expectancy risk measurement. Unpublished doctoral dissertation. Complutense University, Faculty of Economics and Business, Madrid.

Hernández, M., Lozano, C. and Vilar, J.L. (submitted). A note on life insurance ratemaking with proportional hazard transform. Annals if the Institute of Spanish Actuaries.

Landsman, Z. and Sherris, M. (2001). Risk measures and insurance premium principles. Insurance: Mathematics & Economics, 29, 103-115.

Modigliani, M. and Miller, M. (1958). The cost of capital, corporate finance and the theory of investment. The American Economic Review, 48(3), 261-297.

Prieto Pérez, E. and Fernández Plasencia, J. (2000). Mortality tables for the population of Spain from 1950 to 1990. Table projected to 2000.

Tasche, D. (2000). Risk contributions and performance measurement. [Online]. Technical University of Munich.

Tse, Y.K. (2009). Nonlife actuarial models. Theory, methods and evaluation. Cambridge (UK): Cambridge University Press.

Wang, S. (1995). Insurance pricing and increased limits ratemaking by proportional hazards transforms. Insurance, Mathematics & Economics, 17, 43-54.




DOI: http://dx.doi.org/10.18002/pec.v0i16/17.1334

Enlaces refback

  • No hay ningún enlace refback.




Copyright (c) 2013 Montserrat Hernández Solís, Emma Berenguer Cárceles

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.

Pecvnia
Revista de la Facultad de Ciencias Económicas y Empresariales, Universidad de León

Contacto: ulepec@unileon.es
Soporte técnico: journals@unileon.es

I.S.S.N. 1699-9495 (Ed. impresa)
e-I.S.S.N 2340-4272

Editada por el Área de Publicaciones de la Universidad de León