Bioplásticos de origen bacteriano: los poli-hidroxialcanoatos

Autores/as

  • José María Luengo

DOI:

https://doi.org/10.18002/ambioc.v0i16.5745

Resumen

En esta revisión se analizan diferentes aspectos relacionados con unos biomateriales muy interesantes, denominados genéricamente poli-hidroxialcanoatos o, de forma abreviada, PHAs. Estos compuestos son poliésteres de origen bacteriano que poseen propiedades y características muy similares a los
plásticos de origen petroquímico, razón por la que nos referiremos a ellos como bioplásticos. A lo largo del artículo, se describe su estructura química, sus propiedades, las rutas responsables de su biosíntesis y de su degradación, así
como sus múltiples aplicaciones clínicas, farmacológicas, medioambientales y, en suma, biotecnológicas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Arias, S., Sandoval, A., Arcos, M., Cañedo, L.M., Maestro, B., Sanz, J.M., Naharro, G. y Luengo, J.M. 2008. Poly-3-hydroxyalkanoate synthases from Pseudomonas putida U: substrate specificity and ultrastructural studies. Microbial Biotechnology 1:170–176

Baekeland, L.H. 1910. Bakelite, a condensation product of phenols and formaldehyde and its uses. Journal ofFranklinInstitute 169:55–60.

Bian, Y.-Z., Wang, Y., Aibaidoula, G., Chen, G.-Q. y Wu, Q. 2009. Evaluation of poly(3- hydroxybutyrate-co-3-hydroxyhexanoate) conduits for peripheral nerveregeneration.Biomaterials 30:217–225.

Bogdawa, H., Delessert, S. y Poirier, Y. 2005. Analysis of the contribution of the betaoxidation auxiliary enzymes in the degradation of the dietary conju-gated linoleic acid 9-cis-11-trans-octadecanoic acid in the peroxisomes of Saccharomyces cerevisiae.Biochimica etBiophysicaActa1735:204-2013.

Chen, G.-Q. 2010. Plastics completely synthesized by bacteria: polyhydroxyalkanoates. En: "Plastics from Bacteria: Natural Functions and Applications". Editor: G.-Q. Chen. Microbiology Monographs Vo l . 14, pp.17-37. Springer, Berlin/Heidelberg, Alemania.

de Eugenio, L.I., Galán, B., Escapa, I.F., Maestro, B., Sanz, J.M., García, J.L. y Prieto, M. A. 2010. The PhaD regulator controls the simultaneous expression of the phagenes involved in polyhydroxyalkanoate metabolism and turnover in Pseudomonas putida KT2442. Environmental Microbiology 12:1591–1603.

de Eugenio, L.I., García, P., Luengo, J.M., Sanz, J.M., Román, J.S., García, J.L. y Prieto, M.A. 2007.Biochemical evidence that phaZ gene encodes a specific intracelular medium chain length polyhydroxyalkanoate depoly-merase in Pseudomonas putida KT2442: characterizacion of a paradig-matic enzyme. The Journal of Biological Chemistry 282:4951-4962.

Doudoroff, M. y Stanier, R.Y. 1959. Role of poly-β-hydroxybutyric acid in the assimilation of organic carbon by bacteria. Nature 183:1440-1442.

García, B., Olivera, E.R., Miñambres, B., Fernández-Valverde, M., Cañedo, L.M., Prieto, M.A., García, J.L., Martínez, M. y Luengo, J.M. 1999. Novel bio-degradable aromatic plastics froma bacterial source. Genetic and bio-chemical studies on a route of the phenylacetyl-CoA catabolon. The Journal of Biological Chemistry 274:29228–29241.

Gilbert, M. (2017) Plastics Materials: Introduction and Historical Development. En "Brydson's Plastics Materials" (Eighth Edition). Editor: M. Gilbert. pp. 1–18.

Elsevier (Butterworth-Heinemann), Oxford, Reino Unido. Iwata, T. y Tanaka, T. 2010. Plastics completely synthesized by bacteria: polyhydroxyalkanoates. En "Plastics from Bacteria: Natural Functions and Applications". Editor: G.-Q. Chen. Microbiology Monographs Vol. 14, pp.257-282. Springer, Berlin/Heidelberg, Alemania.

Jendrossek, D. y Pfeiffer, D. 2014. New insights in the formation of polyhydroxyalkanoate granules (carbonosomes) and novel functions of poly(3- hydroxybutyrate).EnvironmentalMicrobiology 16:2357-2373.

Khandal, D., Pollet, E. y Avérous, L. 2015. Polyhydroxyalkanoate-based multiphase materials. En: “Polyhydroxyalkanoate (PHA) based blends, composites and nanocomposites”. Editores: I. Roy y P.M. Visakh RSC Green Chemistry No. 30, pp.119-140. The Royal Society of Chemistry, Londres, Reino Unido.

Kobayasi, T., Uchino, K., Abe, T., Yamazaki, Y. y Saito, T. 2005. Novel intracelular 3- hydroxybutyrate-oligomer hydrolase in Wautersia eutropha H16. Journal of Bacteriology 187:5129-5135.

Lemoigne, M. 1923. Production d'acide b-oxybutyrique par certaines bactéries du groupe duB. subtilis.ComptesRendus de l'Academie des Sciences 176:1761.

Luengo, J.M., García, B., Sandoval, A., Naharro, G. y Olivera, E. R. (2003) Bioplastics frommicroorganisms.CurrentOpinioninMicrobiology 6:251–260.

Maestro, B., Galán, B., Alfonso, C., Rivas, G., Prieto, M.A. y Sanz, J.M. 2013. A new family of intrinsically disordered proteins: structural characterization of the major phasinPhaFfromPseudomonas putidaKT2440.PloSOne8:e56904. Moldes, C., Farinós, G.P., de Eugenio, L.I., García, P., García, J.L., Ortego, F., Hernández-Crespo, P., Castañera, P. y Prieto, M.A. 2006.Newtool for spreading proteins to the environment: Cry1Ab toxin immobilized to bioplastics. Applied Microbiology and Biotechnology 72:88–93.

Moldes, C., García, P., García, J.L. y Prieto, M.A. 2004. In vivo immobilization of fusión proteins on bioplastics by the novel tag BioF. Applied Environmental Microbiology 70:3205–3212.

Noda, I., Lindsey, S.B. y Caraway, D. 210. Plastics completely synthesized by bacteria: polyhydroxyalkanoates. En "Plastics from Bacteria: Natural Functions and Applications". Editor: G.-Q. Chen. Microbiology Monographs Vol. 14, pp.237-255.Springer, Berlin/Heidelberg, Alemania.

Obeso, J.I., Maestro, B., Sanz, J.M., Olivera, E.R. y Luengo, J.M. 2015. The loss of function of PhaC1 is a survival mechanism that counteracts the stress caused by the overproduction of poly-3-hydroxyalkanoates in Pseudomonas putidafadBA.EnvironmentalMicrobiology 17:3182-3194.

Olivera, E.R., Arcos, M., Naharro, G. y Luengo, J. M. 2010 Unusual PHA biosynthesis. En: "Plastics from Bacteria: Natural Functions and Applications". Editor: G.-Q. Chen. Microbiology Monographs Vol. 14, pp. 133–186. Springer, Berlin/Heidelberg, Alemania.

Olivera, E.R., Carnicero, D., Jodrá, R., Miñambres, B., García, B., Abraham, G.A., Gallardo, A., Román, J.S., García, J.L., Naharro, G. y Luengo, J.M. 2001. Genetically engineered Pseudomonas: a factory of new bioplastics with broad applications.EnvironmentalMicrobiology 3:612–618.

Parkes, A. 1866. On the properties of Parkesine, and its application to the arts and manufactures. Journal ofFranklinInstitute81:264–271. Porier Y. y Brumbley S.M. (2010) Plastics completely synthesized by bacteria: polyhydroxyalkanoates. En: "Plastics from Bacteria: Natural Functions and Applications". Editor: G.-Q. Chen. Microbiology Monographs Vol. 14, pp.187-211. Springer, Berlin/Heidelberg, Alemania.

Sandoval, A., Arias-Barrau, E., Arcos, M., Naharro, G., Olivera, E.R. y Luengo, J.M. 2007. Genetic and ultrastructural analysis of different mutants of Pseudomonas putida affected in the poly-3-hydroxy-n-alkanoate gene cluster. Environmental Microbiology 9:737–751.

Sandoval, A., Arias-Barrau, E., Bermejo, F., Cañedo, L., Naharro, G., Olivera, E.R. y Luengo, J. M. 2005. Production of 3-hydroxy-n-phenylalkanoic acids by a genetically engineered strain of Pseudomonas putida. Applied Microbiology and Biotechnology 67:97–105.

Slater, S.C., Voige, W.H. y Dennis, D.E. 1988. Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-β-hydroxybuty-rate biosynthetic pathway.The Journal ofBacteriology 170:4431-4436.

Villarrubia-Gómez, P., Cornell, S. y Fabres, J. 2018. Marine plastic pollution as a planetary boundary threat-The drifting piece in the sustainability puzzle. Marine Policy 96:213-220

Wang, L., Wang, Z.-H., Shen, C.-Y., You, M.-L., Xiao, J.-F. y Chen, G.-Q. 2010. Differentiation of human bone marrow mesenchymal stem cells grown in terpolyesters of 3-hydroxyalkanoates scaffolds into nerve cells. Biomaterials 31:1691–1698.

Williams, S. F. y Martin, D. P. (2005) Applications of polyhydroxyalkanoates (PHA) in medicine and pharmacy. En: "Biolymers Online". Editores: Y. Doi y A. Steinbüchel, Polyesters, Part 4, pp.91-128. John Wiley & Sons, Weinheim, Alemania.

Williams, S.F., Rizk, S. y Martin, D.P. 2013. Poly-4-hydroxybutyrate (P4HB): a new generation of resorbable medical devices for tissue repair and regeneration. Biomedical Technology 58:439–452.

Williamson, D.H. y Wilkinson, J.F. 1958. The isolation and estimation of the poly-β- hydroxybutyrate inclusions of Bacillus species. The Journal of General Microbiology 19:198-209.

Yamamoto, H., Kuno, Y., Sugimoto, S., Takeuchi, H. y Kawashima, Y. 2005. Surfacemodified PLGA nanosphere with chitosan improved pulmonary delivery of calcitonin by mucoadhesion and opening of the intercellular tight junctions. Journal of Controlled Release 102:373–381.

Zou, X.H., Li, H.M., Wang, S., Leski, M., Yao, Y.C., Yang, X.D., Huang, Q.J. y Chen G.-Q. 2009. The effect of 3-hydroxybutyrate methyl ester on learning and memory in mice. Biomaterials 30:1532-1541.

Descargas

Publicado

2018-12-24

Cómo citar

Luengo, J. M. (2018). Bioplásticos de origen bacteriano: los poli-hidroxialcanoatos. Ambiociencias, (16), 5–24. https://doi.org/10.18002/ambioc.v0i16.5745

Número

Sección

A fondo