Células troncales y reprogramación celular

Autores/as

  • Marta Martín-López
  • María C. Marín
  • Margarita Marqués

DOI:

https://doi.org/10.18002/ambioc.v0i16.5752

Resumen

A partir de diferentes estadios del desarrollo embrionario murino, es posible establecer in vitro cultivos de células troncales que presentan dos rasgos distintivos:
su capacidad para proliferar indefinidamente, dando lugar a nuevas células troncales (auto-renovación), y su capacidad de diferenciación a todos los tipos celulares que forman el organismo adulto (pluripotencia). Durante décadas,
el tránsito del estado pluripotente al estado de diferenciación terminal fue considerado irreversible; sin embargo, en la actualidad es posible revertir este proceso e inducir la pluripotencia en células somáticas mediante la expresión de
factores de transcripción que regulan la identidad de las células troncales embrionarias. Este proceso, denominado reprogramación celular, da lugar a la generación
de células troncales pluripotentes inducidas (iPSCs), que presentan características moleculares y funcionales similares a las de células troncales embrionarias (ESCs). Por ello, las células reprogramadas son una valiosa herramienta
en Biomedicina, y están siendo empleadas para modelar enfermedades humanas o para la búsqueda de nuevos tratamientos en patologías que no responden
a los enfoques clínicos tradicionales.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Brambrink, T., Foreman, R., Welstead, G.G., Lengner, C.J., Wernig, M., Suh, H. y Jaenisch, R. 2008. Sequential expression of pluripotency markers during direct reprogramming ofmouse somatic cells. Cell StemCell 2: 151-159.

Brons, I.G., Smithers, L.E., Trotter, M.W., Rugg-Gunn, P., Sun, B., Chuva de Sousa Lopes, S.M. et al. 2007. Derivation of pluripotent epiblast stem cells frommammalianembryos. Nature 448: 191-195.

Buganim, Y., Faddah, D.A., Cheng, A.W., Itskovich, E., Markoulaki, S., Ganz, K. et al. 2012. Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell 150: 1209-1222.

Du, P., Pirouz,M., Choi, J.,Huebner, A.J., Clement, K.,Meissner, A. et al. 2018. An intermediate pluripotent state controlled by microRNAs is required for thenaive-to-primed stemcell transition. Cell StemCell 22:851-864.

Evans, M.J. y Kaufman, M.H. 1981. Establishment in culture of pluripotential cells frommouse embryos.Nature 292: 154-156. Gaspar-Maia, A., Alajem, A., Meshorer, E. y Ramalho-Santos, M. 2011. Open chromatin in pluripotency and reprogramming. Nature Reviews Molecular Cell Biology 12: 36-47.

Higuchi, A., Ling, Q.D., Kumar, S.S., Munusamy, M.A., Alarfaj, A.A., Chang, Y., et al. 2015. Generation of pluripotent stem cells without the use of genetic material. Laboratory Investigation95: 26-42.

Hochedlinger, K. y Jaenisch R. 2015. Induced pluripotency and epigenetic reprogramming. Cold Spring Harbor Perspectives in Biology 7: pii: a019448.

Hockemeyer. D. y Jaenisch, R. 2016. Induced pluripotent stem cells meet genome editing. Hong,H., Takahashi, K., Ichisaka, T., Aoi, T., Kanagawa,O.,Nakagawa,M. et al.

Suppression of induced pluripotent stem cell generation by the p. 53-p21 pathway.Nature 460: 1132-1135.

Ilic, D., Devito, L., Miere, C. y Codognotto, S. 2015. Human embryonic and induced pluripotent stem cells in clinical trials. British Medical Bulletin 116: 19-27.

Kalkan, T. y Smith, A. 2014. Mapping the route from naive pluripotency to lineage specification. Philosophical Transactions of The Royal Society Of London Series B, Biological sciences 369.

Karagiannis, P., Takahashi, K., Saito, M., Yoshida, Y., Okita, K., Watanabe, A. et al. 2019. Induced pluripotent stem cells and their use in human models of disease and development. PhysiologicalReviews 99: 79-114.

Kawamura,T., Suzuki, J.,Wang,Y.V.,Menendez, S.,Morera, L.B.,Raya,A., et al. 2009. Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 460: 1140-1144.

Klimczewska K., Kasperczuk A. y Suwinska A. 2018. The regulative nature of mammalian embryos. Current topics in Developmental Biology 128: 105-149.

Li, R., Liang, J., Ni, S., Zhou, T., Qing, X., Li, H. et al. 2010. A mesenchymal-toepithelial

transition initiates and is required for the nuclear reprogramming ofmouse fibroblasts. Cell StemCell 7: 51-63.

Loh, Y.H.,Wu, Q., Chew, J.L., Vega, V.B., Zhang,W., Chen, X., et al. 2006. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stemcells. NatureGenetics 38: 431-440.

Marion, R.M., Strati, K., Li, H., Murga, M., Blanco, R., Ortega, S et al. 2009. iPS cell genomic integrity.Nature 460: 1149-1153.

Martin-Lopez, M., Maeso-Alonso, L., Fuertes-Alvarez, S., Balboa, D., Rodríguez-Cortez, V.,Weltner, J., et al. 2017. p73 is required for appropriate BMPinduced mesenchymal-to-epithelial transition during somatic cell reprogramming.CellDeath&Disease8: e3034.

Matsui, Y., Zsebo, K. y Hogan, B.L. 1992. Derivation of pluripotential embryonic stemcells frommurine primordial germcells inculture.Cell 70:841-847.

Nefzger, C.M., Rossello, F.J., Chen, J., Liu, X., Knaupp, A.S., Firas, J. et al. 2017. Cell type of origin dictates the route to pluripotency. Cell Reports 21: 2649-2660.

Pflaum, J., Schlosser, S. y Müller, M. 2014. p53 family and cellular stress responses incancer.Frontiers inOncology 4: 285.

Popowski, M. y Tucker, H. 2015. Repressors of reprogramming. World Journal of Stem Cells 7: 541-546.

Raya, A., Rodriguez-Piza, I., Guenechea, G., Vassena, R., Navarro, S., Barrero, M.J. et al. 2009. Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stemcells.Nature 460: 53-59.

Rezza, A., Sennett, R. y Rendl, M. 2014. Adult stem cell niches: cellular and molecular components. Current Topics in Developmental Biology 107:333-372.

Rony, I.K., Baten, A., Bloomfield, J.A., Islam, M.E., Billah, M.M. y Islam, K.D. 2015. Inducing pluripotency in vitro: recent advances and highlights in induced pluripotent stem cells generation and pluripotency reprogramming.CellProliferation48: 140-156.

Samavarchi-Tehrani, P., Golipour, A., David, L., Sung, H.K., Beyer, T.A., Datti, A., et al. 2010. Functional genomics reveals a BMP-drivenmesenchymalto-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell 7: 64-77.

Seah M.K.Y. y Messerschmidt D.M. From germline to soma: epigenetic dynamics in the mouse preimplantation embryo. 2018. Current topics in Developmental Biology 128: 203-235.

Shi, Y., Inoue H., Wu, J.C. y Yamanaka S. 2017.Induced pluripotent stem cell technology: a decade of progress. Nature Reviews Drug Discovery 16: 115-130.

Silva, J., Nichols, J., Theunissen, T.W., Guo, G., van Oosten, A.L., Barrandon, O., et al. 2009. Nanog is the gateway to the pluripotent ground state.Cell 138: 722-737.

Stadtfeld, M., Maherali, N., Breault, D.T. y Hochedlinger, K. 2008. Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell StemCell 2: 230-240.

Warren, C.R. y Cowan, C.A. 2018. Humanity in a dish: population genetics with iPSCs.Trends inCellBiology 28: 46-57.

Wu, J. y Izpisua Belmonte, J.C. 2015. Dynamic Pluripotent Stem Cell States andTheirApplications.Cell StemCell 2015 17: 509-525.

Takahashi S, Kobayashi S, Hiratani I. 2018. Epigenetic differences between naive and primed pluripotent stem cells. Cellular and Molecular Life Sciences 75: 1191-1203.

Takahashi, K., Tanabe, K., Ohnuki, M, Narita, M, Ichisaka T, Tomoda K, et al. 2007. Induction of pluripotent stem cells from adulthumanfibroblasts by defined factors fromadult human fibroblasts by defined factors. Cell 131: 861-72.

Takahashi, K. y Yamanaka, S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663-676.

Takahashi, K. y Yamanaka S. 2016. Induced pluripotent stem cell technology: a decade of transcription factor-mediated reprogramming to pluripotency. Nature Reviews Molecular Cell Biology 17: 183-193.

Weinberger L, Ayyash M, Novershtern N, Hanna JH. 2016. Dynamic stem cell states: naive to primed pluripotency in rodents and humans. Nature Reviews Molecular Cell Biology 17: 155-169.

Wilmut, I., Schnieke, A.E., McWhir, J., Kind, A.J. y Campbell, K.H.S. 1997. Viable offspring derived from fetal and adult mammalian cells. Nature 385: 810-813.

Wilmut, I., Bai, y. y Taylor, J. 2015. Somatic cell nuclear transfer: origins, the present position and future opportunities. Philosophical transactions of the Royal Society of London Series B, Biological sciences 370: 20140366.

Yamanaka, S. y Blau, H.M. 2010. Nuclear reprogramming to a pluripotent state by three approaches. Nature 465: 704-712.

Descargas

Publicado

2018-12-24

Cómo citar

Martín-López, M., Marín, M. C., & Marqués, M. (2018). Células troncales y reprogramación celular. Ambiociencias, (16), 25–37. https://doi.org/10.18002/ambioc.v0i16.5752

Número

Sección

Poniendo en claro

Artículos más leídos del mismo autor/a

  • José Manuel Jiménez Heras, Laura Lindo Yugueros, Laura Maeso Alonso, Daniel Martínez Manuel, Lorena Mata Gómez, Ana Pariente Delgado, Cayetano Pleguezuelos Manzano, Israel Prada García, Pablo Prieto Fuentes, Patricia Primo Arias, Ignacio Prusen Mota, Gabriel Ramírez Nieto, Daniel Roca Lema, Sonia Sánchez Bezanilla, Natalia Sanz Gómez, Eider Valle Encinas, Roberto Vázquez Fernández, Cristina Vega Carbajal, Paloma Vicario Sánchez, Lucía Villamañán de Santiago, Irene Villar Rúa, María C. Marín, Nuevas terapias dirigidas para el tratamiento del cáncer , Ambiociencias: Núm. 9 (2012): Junio