La integración del sistema somatosensorial cutáneo.

El sistema de vibrisas

Autores/as

  • Lorea Chaparro González

DOI:

https://doi.org/10.18002/ambioc.i19.7334

Palabras clave:

Codificación de texturas, Procesamiento sensorimotor, Reconocimiento de objetos, Vibrisas

Resumen

El sentido que denominamos tacto es un sistema muy complejo que en su mayor parte está localizado en la piel. Existen diferentes tipos de receptores sensoriales que permiten reconocer tipos de estímulos muy variados. La mayor parte de estos receptores son estimulados por estímulos físicos como presión, vibración o estiramiento y se denominan mecanorreceptores. Dentro de este tipo de receptores se incluyen los pelos, que pueden llegar a formar sistemas de detección muy complejos formando órganos especializados como el sistema de vibrisas de muchos vertebrados. Este sistema está destinado esencialmente al reconocimiento del medio que rodea al animal. En los roedores, una gran parte de la corteza cerebral y otras regiones del encéfalo están dedicados al procesado y respuesta de la información procedente de las vibrisas, que juegan un papel crucial en el reconocimiento de objetos y codificación de texturas como en el desarrollo de diferentes tipos de conductas y aprendizaje.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aronoff, R., Matyas, F., Mateo, C., Ciron, C., Schneider, B. y Petersen, C.C.H. 2010. Longrange connectivity of mouse primary somatosensory barrel cortex. European Journal of Neuroscience, 31:2221-2233.

Bajwa, H. y Al Khalili, Y. 2021. Physiology, Vibratory Sense. StatPearls Publishing. Treasure Island, Florida.

Bautista, D. M. y Lumpkin, E. A. 2011. Probing mammalian touch transduction. The Journal of General Physiology, 138:291-301.

Bear, M. F., Connors, B. W. y Paradiso, M. A. 2016. Neuroscience: exploring the brain. (eds. Lippincott Williams y Wilkins). Philadelphia.

Carvell, G. E. y Simons, D. J. 1990. Biometric analyses of vibrissal tactile discrimination in the rat. Journal of Neuroscience, 10:2638-2648.

Chen, J. L., Carta, S., Soldado-Magraner, J., Schneider, B. L. y Helmchen, F. 2013. Behaviour-dependent recruitment of long-range projection neurons in somatosensory cortex. Nature, 499:336-340.

Chen, J. L., Margolis, D. J., Stankov, A., Sumanovski, L. T., Schneider, B. L. y Helmchen, F. 2015. Pathway-specific reorganization of projection neurons in somatosensory cortex during learning. Nature Neuroscience, 18:1101-1108.

Cohen, J. Y., Haesler, S., Vong, L., Lowell, B. B. y Uchida, N. 2012. Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature, 482:85-88.

Diamond, M. E. y Armstrong-James, M. 1992. Role of parallel sensory pathways and cortical columns in learning. Concepts Neuroscience, 3:55-78.

Ferezou, I., Haiss, F., Gentet, L. J., Aronoff, R., Weber, B. y Petersen, C. C. H. 2007. Spatiotemporal dynamics of cortical sensorimotor integration in behaving mice. Neuron, 56:907-923.

Gabernet, L., Jadhav, S. P., Feldman, D. E., Carandini, M. y Scanziani, M. 2005. Somatosensory integration controlled by dynamic thalamocortical feed-forward inhibition. Neuron, 48:315-327.

Hasselmo, M. E. 2006. The role of acetylcholine in learning and memory. Current Opinion in Neurobiology, 16:710-715.

Hangya, B., Ranade, S. P., Lorenc, M. y Kepecs, A. 2015. Central cholinergic neurons are rapidly recruited by reinforcement feedback. Cell, 162:1155-1168.

Hayashi, H. 1980. Distributions of vibrissae afferent fiber collaterals in the trigeminal nuclei as revealed by intra-axonal injection of horseradish peroxidase. Brain Research, 183:442-446.

Jacquin, M. F., Renehan, W. E., Rhoades, R.W. y Panneton, W. M. 1993. Morphology and topography of identified primary afferents in trigeminal subnuclei principalis and oralis. Journal of Neurophysiology, 70:1911-1936.

Kampa, B. M., Clements, J., Jonas, P. y Stuart, G. J. 2004. Kinetics of Mg2+ unblock of NMDA receptors: implications for spike-timing dependent synaptic plasticity. The Journal of Physiology, 556:337-345.

Kleinfeld, D. y Deschênes, M. 2011. Neuronal basis for object location in the vibrissa scanning sensorimotor system. Neuron, 72:455-468.

Knutsen, P. M., Pietr, M. y Ahissar, E. 2006. Haptic object localization in the vibrissal system: behavior and performance. Journal of Neuroscience, 26:8451-8464.

Kuehn, E. D., Meltzer, S., Abraira, V. E., Ho, C. Y. y Ginty, D. D. 2019. Tiling and somatotopic alignment of mammalian low-threshold mechanoreceptors. Proceedings of the National Academy of Sciences, 116:9168-9177.

Kwon, S. E., Yang, H., Minamisawa, G. y O’Connor, D. H. 2016. Sensory and decision-related activity propagate in a cortical feedback loop during touch perception. Nature Neuroscience, 19:1243-1249.

Land, P.W. y Simons, D.J. 1985. Metabolic and structural correlates of the vibrissae representation in the thalamus of the adult rats. Neuroscience Letters, 60:319-324.

Larkum, M. E., Zhu, J. J. y Sakmann, B. 1999. A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature, 398:338-341.

Ma, P. M. 1991. The barrelettes – architectonic vibrissal representations in the brainstem trigeminal complex of the mouse. Normal structural organization. Journal of Comparative Neurology, 309:161-199.

Matyas, F., Sreenivasan, V., Marbach, F., Wacongne, C., Barsy, B., Mateo, C., Aronoff, R. y Petersen, C. C. H. 2010. Motor control by sensory cortex. Science, 330:1240-1243.

Mehta, S. B., Whitmer, D., Figueroa, R., Williams, B. A. y Kleinfeld, D. 2007. Active spatial perception in the vibrissa scanning sensorimotor system. PLOS Biology, 5:e15.

Moore, J. D., Deschênes, M., Furuta, T., Huber, D., Smear, M. C., Demers, M. y Kleinfeld, D. 2013. Hierarchy of orofacial rhythms revealed through whisking and breathing. Nature, 497: 205-210.

O’Connor, D. H., Clack, N. G., Komiyama, T., Myers, E. W. y Svoboda, K. 2010. Vibrissa-based object localization in head-fixed mice. Journal of Neuroscience, 30:1947-1967.

O’Connor, D. H., Hires, S. A., Guo, Z. V., Li, N., Yu, J., Sun, Q. Q., Huber, D. y Svoboda, K. 2013. Neural coding during active somatosensation revealed using illusory touch. Nature Neuroscience, 16:958-965.

Petersen, C.C. H. 2007. The functional organization of the barrel cortex. Neuron, 56:339-355.

Petersen, C.C.H. 2019. Sensorimotor processing in the rodent barrel cortex. Nature Reviews Neuroscience, 20:533-546.

Rhoades, R. W., Belford, G. R. y Killackey, H. P. 1987. Receptive-field properties of rat ventral posterior medial neurons before and after selective kainic acid lesions of the trigeminal brain stem complex. Journal of Neurophysiology, 57:1577-1600.

Sachidhanandam, S., Sreenivasan, V., Kyriakatos, A., Kremer, Y. y Petersen, C. C. H. 2013. Membrane potential correlates of sensory perception in mouse barrel cortex. Nature Neuroscience, 16:1671-1677.

Sachidhanandam, S., Sermet, B. S. y Petersen, C. C. H. 2016. Parvalbumin-expressing GABAergic neurons in mouse barrel cortex contribute to gating a goal-directed sensorimotor transformation. Cell Reports, 15: 700-706.

Schultz, W., Dayan, P. y Montague, P. R. 1997. A neural substrate of prediction and reward. Science, 275:1593-1599.

Sippy, T., Lapray, D., Crochet, S. y Petersen, C. C. H. 2015. Cell-type-specific sensorimotor processing in striatal projection neurons during goal-directed behavior. Neuron, 88:298-305.

Sofroniew, N. J., Vlasov, Y. A., Hires, S. A., Freeman, J. y Svoboda, K. 2015. Neural coding in barrel cortex during whisker-guided locomotion. eLife, 4:e12559.

Sreenivasan, V., Karmakar, K., Rijli, F. M. y Petersen, C. C. H. 2015. Parallel pathways from motor and somatosensory cortex for controlling whisker movements in mice. European Journal of Neuroscience, 41:354-367.

Stüttgen, M. C. y Schwarz, C. 2008. Psychophysical and neurometric detection performance under stimulus uncertainty. Nature Neuroscience, 11:1091-1099.

Takahashi, N., Oertner, T. G., Hegemann, P. y Larkum, M. E. 2016. Active cortical dendrites modulate perception. Science, 354:1587-1590.

Van der Loos, H. 1976. Neuronal circuitry and its development. Progress in Brain Research, 45:259-278.

Voisin, D.L., Doméjean-Orliaguet, S., Chalus, M., Dallel, R. y Woda, A. 2002. Ascending connections from the caudal part to the oral part of the spinal trigeminal nucleus in the rat. Neuroscience, 109:183-193.

Yagishita, S., Hayashi-Takagi, A., Ellis-Davies, G. C. R., Urakubo, H., Ishii, S y Kasai, H. 2014. A critical time window for dopamine actions on the structural plasticity of dendritic spines. Science, 345:1616-1620.

Yamashita, T. y Petersen, C. C. H. 2016. Target-specific membrane potential dynamics of neocortical projection neurons during goal-directed behavior. eLife, 5:e15798.

Yamashita, T., Vavladeli, A., Pala, A., Galan, K., Crochet, S., Petersen, S. S. A. y Petersen, C. C. H. 2018. Diverse long-range axonal projections of excitatory layer 2/3 neurons in mouse barrel cortex. Frontiers in Neuroanatomy, 12:33.

Yang, H., Kwon, S. E., Severson, K. S. y O’Connor, D. H. 2016. Origins of choice-related activity in mouse somatosensory cortex. Nature Neuroscience, 19:127-134.

Descargas

Publicado

2021-12-22

Cómo citar

Chaparro González, L. (2021). La integración del sistema somatosensorial cutáneo.: El sistema de vibrisas. Ambiociencias, (19), 121–130. https://doi.org/10.18002/ambioc.i19.7334

Número

Sección

Poniendo en claro