Transgénesis en animales de granja

Authors

  • Margarita M. Marqués
  • Marta F. Baro
  • Silvia Nicolás
  • Yolanda Bayón

DOI:

https://doi.org/10.18002/ambioc.v0i12.4945

Keywords:

Biología, Genética, Química, Biotecnología, Animales domesticos, Metodología, Transgénesis,

Abstract

La transgénesis en animales de granja ha experimentado una importante evolución desde sus inicios en la década de los años 80. La eficiencia de las técnicas ha aumentado considerablemente y, a las primeras experiencias llevadas a cabo mediante microinyección pronuclear en el cigoto, le han seguido otras metodologías como la transferencia nuclear de células somáticas, que ha tenido particular importancia en estas especies domésticas. Además, en los últimos años, se han desarrollado herramientas de edición del genoma que permiten una alta especificidad en la modificación genética. Entre las numerosas aplicaciones de los animales transgénicos, se encuentra la producción de proteínas de uso terapéutico humano. También, cabe destacar las investigaciones con objeto de generar animales modificados genéticamente para ser utilizados como modelos de enfermedades humanas, o bien destinados a proporcionar órganos para xenotrasplante. Además, en el ámbito estricto de la Producción Animal se está explorando la utilización de la transgénesis para incrementar la resistencia de los animales a enfermedades o mejorar la cantidad y calidad de sus productos.

Downloads

Download data is not yet available.

References

Al-Mashhadi, R.H., Sorensen, C.B., Kragh, P.K., Christoffersen, C., Mortensen, M.B. et al. (2013). Familial hypercholesterolemia and atherosclerosis in cloned minipigs created by DNA transposition of a human PCSK9 gainof-functionmutant. Science Translational Medicine 5: 166ra1.

Blash, S., Schofield, M., Echelard, Y. y Gavin, W. (2012). Update on the first cloned goats. Nature Biotechnology 30: 229-230.

Bottino, R., Wijkstrom, M., Windt D.J., Hara, H., Ezzelarab, M., Murase, N., Bertera, S., He., J., Phelps, C., Ayares, D., Cooper, D.K.C. y Trucco., M. (2014). Pig-to-monkey islet xenotransplantation using multi-transgenic pigs. American Journal of Transplantation 14: 2275-2287.

Campbell, K.H., McWhir, J., Ritchie, W.A. y Wilmut, I. (1996). Sheep cloned by nuclear transfer from a cultured cell line. Nature. 380: 64-66.

Capecchi, M.R. (2005). Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nature Reviews Genetics 6: 507-512.

Cooper, C.A., Garas Klobas, L.C., Maga, E.A. y Murray, J.D. (2013). Consuming transgenic goats' milk containing the antimicrobial protein lysozyme helps resolve diarrea in young pigs. PloS One 8: e58409.

Dyck, M.K., Lacroix, D., Pothier, F., y Sirard, M.A. (2003). Making recombinant proteins in animals--different systems, different applications. Trnds in Biotechnology 21: 394-399.

Evans, M.J. y Kaufman, M.H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature. 292: 154-156.

Gaj, T., Gersbach, C.A., y Barbar, C.F. 2013. ZFN, TALEN, and CRISPR/Casbased methods for genome engineering. Trends in Biotechnology 31: 397-405.

Golovan, S.P., Meidinger, R.G., Ajakaiye, A., Cotritrill, M. et al. (2001). Pigs expressing salivary phytase produce low-phosphorus manure. Nure Biotechnology 19: 741-745.

Gordon, J.W., Scangos, G.A., Plotkin, D.J., Barbosa, J.A. y Ruddle, F.H. (1980). Genetic transformation of mouse embryos by microinjection of purified DNA. Proceedings of the National Academy of Science 77: 7380-7384.

Hammer, R.E., Pursel, V.G., Rexroad, C.E., Wall, R.J., Bolt, D.J., Ebert, K.M., Palmiter, R.D. y Brinster, R.L. 1985. Production of transgenic rabbits, sheep and pigs by microinjection. Nature. 315: 680-683.

Hauschild-Quintern, J., Petersen, B., Cost, G. J. y Niemann, H. (2012). Gene knockout and knockin by zinc-finger nucleases: current status and perspectives. Cellular and Molecular Life Science 70: 2969-2983.

Ivics, Z., Garrels, W., Mátés, L., Yau, T.Y., Bashir, S., Zideck, V., Landa, V., Geurts, A., Ravenec, M., Rülicke, T., Kues, W.A. y Izsváck, Z. (2014). Germline transgenesis in pigs by cytoplasmatic microinjection of sleeping beauty transposons. Nature Protocols 9: 810-827.

Jacobsen, J., Bawden, C.S., Rudiger, S.R., McLaughlan, C.J., Reid, S.J., Waldovogel, H.J., MacDonald, M.E. et al. (2010). An ovine transgenic Hungtington's disease model. Human molecular Genetics 19: 1873-1882.

Kwon, S.C., Choi, J.W., Jang, H.J., Shin, S.S., Lee, S.K. et al. (2010). Production of biofunctional recombinant human interleukin 1 receptor antagonist (rhIL1RN) from transgenic quail egg white. Biology of Reproduction 82: 1057-1064.

Lai, L., Kolber-Simonds, D., Park, K.W., Cheong, H.T., Greenstein, J.L., Im, G-S., Samuel, M., Bonk, A., Rieke, A., Day, B. et al. (2002). Production of alpha1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science. 295: 1089-10926.

Laible, G. y Wells, D.N. (2006). Transgenic cattle applications: the transition from promise to proof. Biotechnology & Genetic Engineering Reviews 22: 125- 150.

Lillico, S.G., Proudfoot, C., Carlson, D.F., Stverakova, D., Neil, C., Blain, C., King, T.J., Ritchie, W.A., Tan, W., Mileham, A.J., McLaren, D.G., Fahrenkrug, S.C. y Whitelaw, C.B. (2013). Live pigs produced from genome edited zygotes. Scientific Reports 3:2847.

Liu, H., Li., Y., Wei, Q., Liu, C., Bolund, L., Vajta, G., Dou, H., Yang, W., Xu, Y., Wang, J., Yang, H., Satunstrup, N.H., y Du, Y. (2013). Development of transgenic minipigs with expression of antimorphic human crytochrome 1. PLoS One 10: e76098.

Moghaddassi, S., Eyestone, W. y Bishop, C.E. (2014). TALEN-mediated modification of the bovine genome for large-scale production of human serum albumin. PLos One 9: e89631.

Ni, W., Qiao, J., Zhao, X., Regouski, M., Yang, M., Polejaeva, I.A. y Chen, C. (2014). Efficient gene knockout in goats using CRISPR/Cas9 system. Plon One 9: e106718.

Palmiter, R.D., Brinster, R.L., Hammer, R.E., Trumbauer, M.E., Rosenfeld, M.G., Birnberg, N.C. y Evans, R.M. (1982). Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature 300: 611-615.

Park, F. (2007). Lentiviral vectors: are they the future of animal transgenesis? Physiological Genomics 31: 159-173.

Renner, S., Fehlings, C., Herbach, N. Hofmann, A., Waldthausen, D.G., Kessler, B. et al. (2010). Glucose intolerance and reduced proliferation of pancreatic beta-cells in transgenic pigs with impaired glucose-dependent insulinotropic polypeptide function. Diabetes 59: 1228-1238.

Rogers, C.S., Hao, Y, Rokhlina, T., Samuel, M., Stoltz, D.A., Li, Y., Petroff, E., Vermeer, D.W., Kabel, A.C., Yan, Z., Spate, L., Wax, D. et al. (2008). Production of CFTR-null and CFTR-DeltaF508 heterozygous pigs by adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer. Journal of Clinical Investigation 118: 1571-1577.

Schnieke, A.E., Kind, A.J., Ritchie, W.A., Mycock, K., Scott, A.R., Ritchie, M., Wilmut, I., Colman, A., y Campbell, K.H. (1997). Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science. 278: 2130-2133.

Tang, M., Qian, L., Jiang, S., Zhang, J., Song, P., Chen, Y., Cui, W. y Li, K. (2014). Functional and safety evaluation of transgenic pork rich in omega-3 fatty acids. Transgenic research 23: 557-571.

Wall, R.J., Powell, A.M., Paape, M.J., Kerr, D.E., Bannerman, D.D., Pusell, V.G., Wells, K.D., Talbot, N. y Hawk, H.W. (2005). Genetically enhanced cows resist intramammary Staphylococcus aureus infection. Nature Biotechnology 23: 445-451.

Wilmut, I., Schnieke, A.E., McWhir, J., Kind, A.J. y Campbell, K.H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature 385: 810-813.

Yang, P., Wang, J., Gong, G., Sun, X., Zhang, R., Du, Z., Liu, Y., Li., R., Ding, F. et al. (2008). Cattle mammary bioreactor generated by a novel procedure of transgenic cloning for large-scale production of functional human lactoferrin. PLoS One 3: e3453.

Published

2018-07-04

How to Cite

Marqués, M. M., Baro, M. F., Nicolás, S., & Bayón, Y. (2018). Transgénesis en animales de granja. Ambiociencias, (12), 34–49. https://doi.org/10.18002/ambioc.v0i12.4945

Issue

Section

Biotecnología animal

Most read articles by the same author(s)