Análisis del fracaso empresarial por sectores: factores diferenciadores = Cross-industry analysis of business failure: differential factors

Autores

  • María Jesús Mures Quintana Universidad de León. Facultad de Ciencias Económicas y Empresariales. Departamento de Economía y Estadística, Área de Estadística e Investigación Operativa
  • Ana García Gallego Universidad de León. Facultad de Ciencias Económicas y Empresariales. Departamento de Economía y Estadística, Área de Estadística e Investigación Operativa
  • María Eva Vallejo Pascual Universidad de León. Facultad de Ciencias Económicas y Empresariales. Departamento de Economía y Estadística, Área de Estadística e Investigación Operativa

DOI:

https://doi.org/10.18002/pec.v0i2012.1107

Palavras-chave:

Fracaso empresarial, Ratios financieros, Información no financiera, Análisis discriminante, Sectores, Business failure, Financial ratios, Non-financial information, Discriminant analysis, Industries

Resumo

El objetivo de este trabajo se centra en el análisis del fracaso empresarial por sectores, a fin de identificar los factores explicativos y predictivos de este fenómeno que son diferentes en tres de los principales sectores que se distinguen en toda economía: industria, construcción y servicios.
Para cada uno de estos sectores, seguimos el mismo procedimiento. En primer lugar, aplicamos un análisis de componentes principales con el que identificamos los factores explicativos del fracaso empresarial en los tres sectores. A continuación, consideramos dichos factores como variables independientes en un análisis discriminante, que aplicamos para predecir el fracaso de una muestra de empresas, utilizando no sólo información financiera en forma de ratios, sino también otras variables no financieras relativas a las empresas, así como información externa a las mismas que refleja las condiciones macroeconómicas bajo las que desarrollan su actividad.

This paper focuses on a cross-industry analysis of business failure, in order to identify the explanatory and predictor factors of this event that are different in three of the main industries in every economy: manufacturing, building and service.

For each one of these industries, the same procedure is followed. First, a principal components analysis is applied in order to identify the explanatory factors of business failure in the three industries. Next, these factors are considered as independent variables in a discriminant analysis, so as to predict the firms’ failure, using not only financial information expressed by ratios, but also other non-financial variables related to the firms, as well as external information that reflects macroeconomic conditions under which they develop their activity.

Downloads

Não há dados estatísticos.

Referências

Altman, E.I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The Journal of Finance, XXIII(4), 589-609.

Altman, E.I. (1984). The success of business failure models: An international survey. Journal of Banking & Finance, 8, 171-198.

Altman, E.I., Marco, G. y Varetto, F. (1994). Corporate distress diagnosis: Comparisons using linear discriminant analysis and neural networks (the Italian experience). Journal of Banking & Finance, 18, 505-529.

Balcaen, S. y Ooghe, H. (2006). 35 years of studies on business failure: An overview of the classical statistical methodologies and their related problems. The British Accounting Review, 38(1), 63-93.

Beaver, W.H. (1966). Financial ratios as predictors of failure. Journal of Accounting Research, Supplement to vol. 4: Empirical research in accounting: Selected studies, 71-111.

Blum, M. (1974). Failing company discriminant analysis. Journal of Accounting Research, Spring, 1-25.

Charitou, A., Neophytou, E. y Charalambous, C. (2004). Predicting corporate failure: Empirical evidence for the UK. European Accounting Review, 13(3), 465-497.

Chava, S. y Jarrow, R.A. (2004). Bankruptcy prediction with industry effects. Review of Finance, 8, 537-569.

Cybinski, P. (2001). Description, explanation, prediction – the evolution of bankruptcy studies? Managerial Finance, 27(4), 29-44.

Deakin, E.B. (1972). A discriminant analysis of predictors of business failure. Journal of Accounting Research, spring, 161-179.

Dimitras, A.I., Slowinski, R., Susmaga, R. y Zopounidis, C. (1999). Business failure prediction using rough sets. European Journal of Operational Research, 114(2), 263-280.

Dimitras, A.I., Zanakis, S.H. y Zopounidis, C. (1996). A survey of business failures with an emphasis on prediction methods and industrial applications. European Journal of Operational Research, 90(3), 487-513.

Edmister, R.O. (1972). An empirical test of financial ratio analysis for small business failure prediction. Journal of Financial and Quantitative Analysis, 7, march, 1477-1493.

Elam, R. (1975). The effect of lease data on the predictive ability of financial ratios. The Accounting Review, 50(1), 25-43.

Izan, H.Y. (1984). Corporate distress in Australia. Journal of Banking and Finance, 8, 303-320.

Jones, F.L. (1987). Current techniques in bankruptcy prediction. Journal of Accounting Literature, 6, 131-164.

Junta de Andalucía (2004). Tejido empresarial y factores de éxito. Una aproximación al caso andaluz. Sevilla: Servicio de Asesoría Técnica y Publicaciones. Consejería de Economía y Hacienda.

Keasey, K. y Watson, R. (1991). Financial distress prediction models: A review of their usefulness. British Journal of Management, 2(2), 89-102.

Laffarga Briones, J., Martín Marín, J.L. y Vázquez Cueto, M.J. (1985). El análisis de la solvencia en las instituciones bancarias: Propuesta de una metodología y aplicaciones a la Banca española. ESIC-MARKET, 48, abril-junio, 51-73.

Laitinen, E.K. (1991). Financial ratios and different failure processes. Journal of Business, Finance & Accounting, 18(5), 649-673.

Laitinen, E.K. y Laitinen, T. (1998). Misclassification in bankruptcy prediction in Finland: Human information processing approach. Accounting, Auditing & Accountability Journal, 11(2), 216- 244.

Lang, L.H.P. y Stulz, R.M. (1992). Contagion and competitive intra-industry effects of bankruptcy announcements. Journal of Financial Economics, 32, 45-60.

Lincoln, M. (1984). An empirical study of the usefulness of accounting ratios to describe levels of insolvency risk. Journal of Banking and Finance, 8, 321-340.

McDonald, B. y Morris, M.H. (1984). The statistical validity of the ratio method in financial analysis: An empirical examination. Journal of Business Finance & Accounting, 11(1), 89-96.

Mora Enguídanos, A. (1994). Los modelos de predicción del fracaso empresarial: una aplicación empírica del logit. Revista Española de Financiación y Contabilidad, XXIII(78), 203-233.

Odom, M.D. y Sharda, R. (1992). A neural network model for bankruptcy prediction. En, R.R. Trippi y E. Turban (Eds.), Neural networks in finance and investing. Using artificial intelligence to improve real-world performance (pp. 177-185). Cambridge: Probus Publishing Company.

Ohlson, J.A. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research, 18(1), 109-131.

Palepu, K.G. (1986). Predicting takeover targets. A methodological and empirical analysis. Journal of Accounting and Economics, 8, 3-35.

Peel, M.J., Peel, D.A. y Pope, P.F. (1986). Predicting corporate failure - some results for the UK corporate sector. Omega, International Journal of Management Science, 14(1), 5-12.

Pina Martínez, V. (1989). La información contable en la predicción de la crisis bancaria 1977-1985. Revista Española de Financiación y Contabilidad, XVIII(58), 309-338.

Platt, H.D. y Platt, M.B. (1990). Development of a class of stable predictive variables: The case of bankruptcy prediction. Journal of Business Finance & Accounting, 17(1), 31-51.

Platt, H.D. y Platt, M.B. (1991). A note on the use of industry-relative ratios in bankruptcy prediction. Journal of Banking and Finance, 15(6), 1183-1194.

Ravi Kumar, P. y Ravi, V. (2007). Bankruptcy prediction in banks and firms via statistical and intelligent techniques – A review. European Journal of Operational Research, 180(1), 1-28.

Román Martínez, I., de la Torre Martínez, J.M. y Zafra Gómez, J.L. (2001). Análisis sectorial de la predicción del riesgo de insolvencia: Un estudio empírico. XI Congreso AECA “Empresa, Euro y Nueva Economía”. Madrid, 26-28 de septiembre.

Smith, M. y Liou, D.K. (2007). Industrial sector and financial distress. Managerial Auditing Journal, 22(4), 376–391.

Taffler, R.J. (1982). Forecasting company failure in the UK using discriminant analysis and financial ratio data. Journal of the Royal Statistical Society, Series A – Statistics in Society, 145(3), 342-358.

Taylor, J.D. (1997/1998). Cross-industry differences in business failure rates: Implications for portfolio management. Commercial Lending Review, 13(1), 36-46.

Theodossiou, P.T. (1991). Alternative models for assessing the financial condition of business in Greece. Journal of Business, Finance & Accounting, 18(5), 697-720.

Zmijewski, M.E. (1984). Methodological issues related to the estimation of financial distress prediction models. Journal of Accounting Research, Supplement to vol. 22, Studies on Current Econometric Issues in Accounting Research, 59-82.

Publicado

2012-03-03

Como Citar

Mures Quintana, M. J., García Gallego, A., & Vallejo Pascual, M. E. (2012). Análisis del fracaso empresarial por sectores: factores diferenciadores = Cross-industry analysis of business failure: differential factors. Pecvnia : Revista de la Facultad de Ciencias Económicas y Empresariales, Universidad de León, (2012), 53–83. https://doi.org/10.18002/pec.v0i2012.1107

Artigos mais lidos do(s) mesmo(s) autor(es)